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Abstract: Some two dozen methods for estimating infiltration and roughness parameters from field measurements of test irrigations are
reviewed in this paper. They differ in their assumptions, ease of analysis, quantity of field data required, and accuracy. They are divided
into two broad categories, depending upon the basic approach to determine infiltration. One features direct application of mass conser-
vation, expressed in terms of the infiltration parameters and then inverted in some way in order to extract those parameters. The other
involves repeated simulation with a sequence of values of the infiltration parameters, coupled to some kind of search procedure—an
optimization—to minimize differences between simulation and measurement. A new one-point technique is proposed, along with sug-

gestions for extending existing methods.

DOI: 10.1061/(ASCE)IR.1943-4774.0000088

CE Database subject headings: Parameters; Open channel flow; Estimation; Infiltration; Hydraulic roughness; Surface irrigation;

Hydraulic properties; Crops.

Introduction

Effective evaluation, management, design, and simulation of
surface-irrigation systems depend on the knowledge of the hy-
draulic characteristics of the fields over which the irrigating
streams flow. A brief review of general considerations regarding
the field parameters influencing surface irrigation can be found in
the companion paper, Strelkoff et al. (2009), and the present ex-
position can be thought of as a continuation of that document, in
particular, as regards infiltration, soil-surface roughness, and crop
hydraulic drag. The last two are usually lumped together and
identified simply as roughness. Infiltration and roughness param-
eters are generally expressed through coefficients in some sort of
functional form.

Unlike soil-surface elevations, also important in performance,
these field characteristics cannot, with current instrumentation
and theory, be directly measured prior to an event. Current trends
are to measure data during an irrigation event and deduce average
or effective infiltration and roughness from these measurements.
Some two dozen methods have been proposed in the literature,
varying widely in data requirements, sought-after parameters, as-
sumptions, complexity of analysis, and resultant accuracy. A few
methods allow some degree of determination of spatial variability.
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Properties has undertaken to formulate an annotated review of
field evaluation methods. As a step in achieving that goal, this
paper provides brief descriptions of various methods, mostly
available in existing literature, emphasizing their shared ap-
proaches and individual differences. Infiltration, generally re-
garded as difficult to estimate, in part because of spatial and
temporal variations, and yet extremely important to irrigation per-
formance, is stressed in the paper, followed by roughness consid-
erations. The important influence and estimation of spatial
variability is not emphasized, nor are real-time determinations of
field properties, which can play a role in controlling an ongoing
Irrigation.

From the theoretical standpoint, there are two fundamental ap-
proaches for estimating infiltration. One comprises a more-or-less
direct computation, based on a volume balance applicable over
any time interval. The volume of inflow must balance the volume
of the surface stream, the infiltrated volume, and the outflow vol-
ume, for any segment of an irrigated length, as well as for the
entire length. Depending upon the assumptions made, an inver-
sion of the equations governing the surface-irrigation stream flow
can sometimes be made, yielding a direct, or essentially direct
(e.g., a regression analysis) solution. The other approach rests
upon a match between measured irrigation data and computer
simulations of the irrigation performed with a sequence of values
for the sought-after infiltration (and roughness) parameters. The
simulations are repeated in some kind of formal optimization pro-
cedure involving a search for the unknown field parameters. This
paper reviews methods in the literature that fall into one or the
other category.

In the 1980’s and 1990’s, in response to an interest in control-
ling surface irrigations with the aid of real-time measurements
(typically advance), a number of approaches appeared in the lit-
erature, many of which adjusted estimated infiltration parameters
at a sequence of time levels by minimizing the differences be-
tween theoretical simulations and measured advance. These meth-
ods were found, by and large, to do a much better, more robust
job of estimating infiltration parameters if the entire advance was
taken into account, rather than individual increments of advance,
step by step, or partial advance. This is not surprising since ir-
regularities in measured advance rates, stemming from longitudi-
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nal spatial variations in cross section, bottom configuration, and
roughness as found in the field, were expected to be accounted for
theoretically solely by infiltration-rate variations. This paper con-
fines its attention to parameter-estimation methods based on the
entire measured irrigation, rather than real-time determinations
made during the advance process.

The paper is organized as follows: empirical formulas for in-
filtration and roughness in common use are presented [see also
Strelkoff et al. (2009)], the first as a function of wetting time, and
the other as a function of slope, wetted cross section, and dis-
charge rate. The necessary balance of volumes is reviewed next,
followed by a series of methods that make direct use of the mass
conservation principle. The application of Bayesian statistics to
generate estimates for missing parameters is noted. The Lewis
and Milne equation, incorporating a particularly surface
irrigation-oriented expression for infiltrated volume is introduced
followed by a method for extracting the parameters of the infil-
tration formula from the balance. The far-reaching simplifications
that arise when the stream-advance function of time is assumed to
be well fitted by a power law are noted next, for both the advance
and postadvance periods. Methods based on this assumption fol-
Iow. The common assumptions for estimating surface-water vol-
umes during the irrigation, in lieu of comprehensive surface depth
measurements are introduced, followed by the methods incorpo-
rating this very significant assumption. Techniques involving
surface-irrigation simulations matching measured stream behav-
ior, short of formal multidimensional optimization, are presented,
as well as several formal optimization methods.

Mathematical Expression of Field Characteristics

Cumulative infiltration is usually expressed as z, volume per unit
area, in border strips and basins, and A, (sometimes given the
symbol Z in the literature), intake volume per unit length, in fur-
rows. Both are generally recognized as dependent on infiltration
time 7. Furrow intake is increasingly recognized as often depen-
dent on wetted perimeter as well. The hydrostatic pressure on the
water flowing over or ponded on the soil surface also plays a
small role, amounting to about 2% increase per centimeter of
surface-water depth (Philip 1958,1969). The empirical functional
form most common in surface irrigation studies for expressing the
dependence of z on time is a modified Kostiakov formula

z=kt*+br+c )

with %, a, b, and ¢ empirical constants (b and especially ¢ are
often set to zero). The Kostiakov-Clemmens branch function (Ko-
stiakov 1932; Clemmens 1981), which reaches the basic rate
sooner, is given (with the addition of the constant term c) by the
two branches joined at 75

z=c+kt?, T<<Tg, z=cptbT, T>Tp (2a)

in which

~

ak 1/1~a
TB=<;> i cg=c+kTy—by (2b)

The same forms as Egs. (1) and (2) have been used for intake,
A, though the values of the constants (and their units) will change
radically. We will use capital letters (K, etc.) to signify the param-
eters in the corresponding intake formula. The quantities z and A,
are related through the wetted perimeter or other characteristic
width, W, as a very rough concept, A,=Wz (clearly, as wetted
perimeter falls after cutoff, A, continues to increase, albeit more
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Fig. 1. Infiltration rate contrasted with final basic rate. Modified
Kostiakov formula. Field depth of infiltration based on 1-m furrow
spacing.

slowly). In particular, if furrow infiltration is assumed based on
furrow spacing one unit wide, K=k, B=b, etc. Caveats regarding
the role of wetted perimeter are noted in Strelkoff et al. (2009). Of
particular importance, with a given soil k, calculated intake per
unit length in a furrow can vary a great deal depending on
whether local wetted perimeter, wetted perimeter at the upstream
end, wetted perimeter at normal depth, or furrow spacing is used
as a basis. The NRCS in applying their families, for example,
relate intake per unit length to infiltration per unit infiltrating area
through an empirical wetted perimeter, related to normal depth at
the upstream end. It follows, in general, that a given measurable
K will relate differently to k values derived with different wetted
perimeter assumptions.

It is often assumed that the basic rate of infiltration is achieved
by the end of the irrigation and can be found by simultaneously
measuring the rates of outflow Oy and inflow O, i.e.

be Qo —COro 3)
LW

in which L=furrow length and W=representative wetted
perimeter—use of the furrow spacing here would make z a field
depth. It should be noted, however, the contribution of the Kos-
tiakov power term in Eq. (1) to infiltration rate can be consider-
able, even after many hours. See, e.g., Fig. 1, drawn for the
Flowell nonwheel furrow conditions (free of compression by trac-
tor wheels) cited in Walker and Humpherys (1983). After 8 h, the
power term still contributes 47% of the total infiltration rate. Even
after 24 h, the contribution has only dropped to 37%.

The selection of one or another functional form for data de-
rived solely from a test irrigation in a border strip or furrow is not
as straightforward as with ring-infiltrometer data, but, still, an a
priori choice provides stability in the procedure for estimating the
parameters for that form.

Soil-surface roughness and plant drag on the flowing stream
are commonly expressed through the Manning formula [see
Strelkoff et al. (2009) for a brief discussion of the issues]

Q2n2

AZRY (4)

sz
in which Q=flow rate; Ay=cross-sectional area of flow; R
=hydraulic radius (area divided by wetted perimeter); s,
=friction slope, essentially, the slope of the water surface; and
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n=empirical Manning roughness parameter characterizing the
soil grains, clods, plant parts, etc.

Mass Conservation—Volume Balance

Explicit expression of mass conservation forms the basis for all of
the direct methods of parameter estimation. During a surface ir-
rigation the mass balance can be written

Vo(t) = Vyl(t) + V(2) + Vgo(t) (5)

in which inflow volume V,,, the surface and infiltrated volumes,
Vy and V,, respectively, and the volume of runoff Vp, are in
balance at every instant of time 7. These can be expressed in terms
of rates, as follows, for example, prior to cutoff

Vo=0o(0) 1 (6)
in which 30 is the time-averaged inflow rate, and
Vy = A—; X A (7)

with Ayp=distance-averaged cross-sectional area of the surface
stream over the advance distance, x,. The runoff volume is

VRO:f Orodt (8)
0

the integral form underscoring that runoff is extremely variable.
Runoff is zero during all of the advance, then typically rises
quickly to a shoulder, continuing to rise gradually as infiltration
rates decrease with time, and finally returns back to zero more-
or-less gradually after cutoff.

The infiltrated volume is given by

x4(2)
V() = f A(x,t)dx (9)
0

in which A =infiltrated volume per unit length. If infiltration is
assumed a function only of wetting time [ignoring hydrostatic
pressure or wetted perimeter effects, e.g., Eq. (1) and (2)], Eq. (9)
can be written

XA(l‘)
V() = f ALt~ ty[x])dx (10)
0

which contains both the advance function [x,(¢) or #,(x), which
can be measured] and the infiltration function (sought). Many of
the direct parameter-estimation methods are based on a known
V,(t), with inflow and outflow in Eq. (5) measured, and Ay from
either measured surface-water depths or an estimate.

Estimation on a Field with a Prior History of Parameter
Estimates -

While many of the simple methods take advantage of some
knowledge of the conditions of the field, or perhaps use a param-
eter determined from prior irrigation events, in general, these
techniques treat parameter estimation as if the collected data con-
stituted the first observations stemming from the unknown param-
eters. Clemmens and Keats (1992a,b) used Bayesian statistics to
identify and take into account simulation-model bias (the result of
differences between model assumptions and the real world). Sta-
tistical analysis of differences between model output and mea-
sured values yields learned patterns of bias that can be applied to
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Fig. 2. (a) Postirrigation distribution of opportunity times; (b) differ-
ent infiltration functions satisfying the postirrigation infiltration dis-
tribution

current data to increase its predictive capabilities. Furthermore,
the approach allows statistical incorporation of parameter values
determined in previous tests into the process to increase the ac-
curacy of current (especially, real-time) estimates. The main
thrust, however, has been to use prior history to estimate two
parameters when measured data and standard estimation methods
yield only one.

Postirrigation Determination of Infiltration
Characteristics

A particularly simple and theoretically exact application of the
volume balance to evaluation of the infiltration parameters stems
from the postirrigation analysis of measured advance and reces-
sion curves. With the irrigation completed, all surface water has
either drained off or infiltrated, Vy in Eq. (5) is zero, and V; is
known from the measured inflow and outflow. Thus the average
depth of infiltration is known. Indeed, following an initial sugges-
tion by Merriam (1971), Clemmens (1981) developed equations
for whole-border estimates of Kostiakov k, if the exponent a is
known from other sources. If the basic Kostiakov formula, k77, is
assumed, in which 7,(x) is the infiltration opportunity time be-
tween the advance and recession curves, as in Fig. 2, and if a is
taken, for example from ring data, k can be found from the equa-
tion for the total volume infiltrated per unit width

N
V= kW2, 198x; (11)
j=1
in which the border length has been subdivided into N segments
and T,=average opportunity time for the jth segment; W
=effective wetted perimeter, assumed constant, so that Ay=Wz.
Clemmens (1981) extended the technique of Eq. (11) to the
branch function of Eq. (2) for the common case that the basic
infiltration rate has been achieved within the smallest opportunity
time measured. For example in a border strip, with the postirri-
gation depth of infiltration d at any station dependent solely on
the opportunity time there
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d=kt+b(t,— 1) (12)

the average depth of infiltration over the border (known from
measurement of inflow and outflow) is

d=kty+b(T,—1p) (13)

With a and b estimated from ring data, the crossover point 7z is
found in terms of k from the third of Eq. (2), and the result
substituted into Eq. (13), to yield the following (simplified, cor-
rected) whole-border estimate of k

af 7 .T__, 1-a
k:(%) (dl —bao> (14)

If 75 is better estimated from the ring data than b, b will follow
from

p— (15)
(1-a)rg+art,
obtained after eliminating k from Eq. (13) and the third of Eq. (2),
which then yields k.

Fig. 2 illustrates that the details of the infiltration function at
opportunity times less than the observed minimum play a minor
role in the distribution of infiltrated water over the given length of
run, as long as the behavior of the function within the observed
range of opportunity times is reasonably correct. The more nearly
uniform are the opportunity times distributed over the length of
run, the more exact will be the evaluation of the irrigation. At the
same time, Clemmens et al. (2001) caution that a narrow range of
opportunity times in the parameter estimation can lead to large
errors in predicted performance for the same soil but under dif-
ferent hydraulic conditions (e.g., slope, inflow rate, length, etc.);
ultimate stream behavior is dependent on the entire infiltration
function of time—right up to the end of recession.

It should also be possible to avoid independent assessment of
a, if two borders with the same soil conditions are irrigated, and
their variations in opportunity time are analyzed. In principle,
both k and a can be solved by a Newton-Raphson solution of the
nonlinear equation pair

M
G, =Vy - kWZ1 79, 8x,;=0
=
Ny
Gy = Vg — kW2, 18,82, =0 (16)
j=t
for which
\Nl
aGl a
E = W . Taljﬁxlj
]:
Ny
0G,
—(3‘; = - kVVE1 Tzlj In Toljﬁxlj
=
Ny
9G,
py =-W 1 Tzszxzj

i=

N
G 2
—F = kW 10 In 70,8, (17)

da it

Overconditioning the problem with more irrigations and equa-
tions would allow for a least-squares best fit for both k and « [this
multiple-border postirrigation approach is based on that of Bou-
wer (1957), which in the absence of a functional form for infil-
tration, leads to a table of cumulative infiltration versus time—
that may, like the results of Finkel and Nir (1960) described later,
tend to oscillate].

Independent determination of a can also be avoided with soils
that can be characterized by membership in empirically defined
families (Strelkoff et al. 2009), e.g., the Soil Conservation Service
(SCS) [NRCS/USDA (SCS) 1984] families or the Merriam and
Clemmens (1985) time-rated families. Each NRCS family mem-
ber is characterized by particular values of Kostiakov k£ and a,
while the time-rated families are characterized by an empirical
relationship between g and 1., the time to infiltrate 100 mm. The
net effect in either case is an implied relationship between k and
a, given, for the time-rated families, by Eq. (73) in Appendix IL
Then, a Newton-Raphson solution for k£ and a would utilize the
first two partial derivatives in Eq. (17), and two more stemming
from a restatement of Eq. (73)

Gz =k— 102~a[(0.675—a)/0.2125] =0

96, _
ok
3G, 24 -0.675
—=_1n10- 102—11{(0.675—&)/0.2125] 18
ga 02125 (18)

Similar equations can be derived for the NRCS infiltration fami-
lies by using the relationship between k and a depicted in Fig. 8 of
Strelkoff et al. (2009) (shown also to a smaller scale in Fig. 10(b),
Appendix II} by the fitted function (Valiantzas et al. 2001)

0.148
k(ll) =60° 14,088 a45 + m (19)

Parameter Estimation Requiring a Closely Spaced Set
of Measured Surface-Depth Hydrographs

At the other end of the spectrum of required field data, the mea-
surement of a complete set of depth hydrographs along the length
of run during the irrigation yields the time variation of the volume
temporarily stored on the surface, Vy(7) in Eq. (5). Thus, with
inflow and outflow known, V,(¢) is also known. Together with the
advance and recession curves, x,(f), xz(t) (a by-product of the
depth hydrographs), this information can be used to deduce the
field infiltration parameters.

This class of methods requires the most extensive data collec-
tion, but is encumbered by the fewest assumptions, and so is the
most direct and physically based of all the techniques reflecting
conditions during the entire irrigation. Based almost exclusively
on mass conservation, the principle problem lies in extracting the
infiltration parameters (and possibly roughness) from the mea-
sured data. The techniques, all of which assume that Vy(z) is a
known, measured function of time, differ in the assumptions
made on the functional forms of the advance and infiltration func-
tions.

In an early development, Finkel and Nir (1960), making no
assumptions on infiltration- or advance-function form, proposed a
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graphical inversion of the technique by Hall (1956) for advance in
border strips, a recursive algebraic equation for the increments of
advance at a sequence of advance times, separated by constant At.
In principle, a tabulated infiltration function of time could be
constructed step by step, a Az for each Ar, without regard for any
functional form of either advance or infiltration function. How-
ever, unless great care is taken that the increments in surface
volume are accurate, and the construction is limited to a small
number of At, the results for Az begin to oscillate. This instability
evidently stems from the structure of the governing algebraic
equation, the inversion of Hall’s. Any error in measurement or
calculation (round off, etc.) must be absorbed by the current cal-
culated Az, and successive steps in the calculation magnify it; the
forward calculation, advance, is stable with the Hall technique,
the reverse, for infiltration, is not.

In a direct, interactive computer procedure (EVALUE),
Strelkoff et al. (1999) superimposed screen plots of measured
V() and V,(¢) calculated from estimates of infiltration param-
eters in a selected functional form. Variable wetted perimeter is
not considered, and the unknown parameters are assumed con-
stant over the entire length of the run. Numerical integration for
the volume under the infiltrated profile is enhanced by weighting
factors based on the ratio of calculated infiltrated depths at each
end of a segment and on an assumed power law (with exponent a)
for depth versus distance back from the advancing front. The
parameter values are changed at the keyboard until the user is
satisfied with the fit of the two curves. In addition to the function
of time, the final values of infiltrated volume are also plotted for
matching. Various functional forms can be investigated simulta-
neously with the parameters in those forms. This brute-force ap-
proach is aimed at selecting those parameters best representative
of the entire time span of the irrigation. A by-product of the cal-
culations is a determination of Manning n values at the stations,
determined from Eq. (4) by calculating the local discharge from
continuity and applying the water-surface slope given by
smoothed profiles derived from the measured hydrographs. A rep-
resentative value for the irrigation is obtained by averaging the
results.

Maheshwari et al. (1988), working with irrigation borders
made in extensively cracked clay soils (k and a of Eq. (1) were
essentially zero in many cases), automated a similar procedure by
formally minimizing an objective function, Z*

Y
Z'=2 (Vo= Vi) (20)

i=1

with the Hooke and Jeeves pattern-search technique attributed to
Leon (1966) and Monro (1971). Vi, is an observed infiltrated
volume, based on Eq. (5) with measured inflow and outflow rates
and Vy given by numerically integrated measured surface-water
depths. V; is calculated from current values of infiltration param-
eters and the measured advance curve. N is the number of times
(separated by equal increments) that the comparison is made in
the duration of the study, ending typically when recession begins
at the upstream end. In application, the measured advance and
infiltrated-volume functions of time are fitted with mathematical
expressions by regression. A number of different functional forms
for infiltration and advance were investigated.

In 1997 (Esfandiari and Maheshwari 1997a), the method was
extended to furrows. The modified Kostiakov parameters K, a,
and B were sought, directly yielding intake (volume per unit
length). Consequently no explicit consideration of wetted perim-
eter in infiltration was undertaken.

Other techniques have been designed to extract the infiltration
parameters by one or another manipulation of the integral in Eq.
(10). The best known of these is the Lewis and Milne equation.

Lewis and Milne Integral Equation

Lewis and Milne (1938) substituted a time integral for the dis-
tance integral of Eq. (10) by means of a formal change in variable
dx=dx/dr, dt,, in which the derivative is the rate of advance
dx,/di{x) at the time the stream has advanced to point x. Eq. (5)
then takes the form

— — v dx
Qp-1=Apx+ f Ay t- tx);dw Vro(?) (21)
0 X

in which z,=time to advance to x. The upper limit on the integral
is

1y=1t, during advance

ty=t;, after advance (22)

in which #;=time to advance to the end of the run, x=L. The
equation is used with a variety of assumptions or measured data
for a variety of purposes, both irrigation simulation and field-
parameter estimation. Its generality allows it to be applied to vari-
ous phases of an irrigation. During the advance phase, for
example, Vpo is zero, and the rest can be viewed as an integral
equation for advance x, as a function of irrigation time 7 (e.g.,
Lewis and Milne 1938; Hall 1956).

Some well known applications of Eq. (21) follow a simplify-
ing assumption on the functional form of the advance curve.
These will be described in a subsequent section. A technique free
of arbitrary assumptions on the advance function is the linear
station advance procedure of Clemmens (1982). Numerical inte-
gration of the infiltrated depth profile is enhanced by the change
of variables in Eq. (10) yielding

14

d.
A= 1) dt, (23)

AV(t) = J
A

Taj-1

Now, following Clemmens, who proposed assuming a (different)
constant rate of advance over each increment Ax,, the advance
rate in Bq. (23) can be taken outside the integral and expressed as
a quotient of differences, as follows:

lAj

Ax;
AV (t)=—+
Z](tl) Af

Ai 145

Aty =14)d1y (24)

in which Az,;=1,(x;)—1,(x;.;). Now, with any given functional
form for z(1), the integral in Eq. (24) can be evaluated for each
j=1,...,N, and the results summed for a calculated V, in terms of
the infiltration-function parameters, namely

N
V) = 2 AV(t) (25)
j=1

For example, with the modified Kostiakov formula of Eq. (1), Eq.
(24) appears as
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Fig. 3. Surface and infiltrated profiles at an arbitrary sequence of
time steps
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as can be followed in Fig. 3 showing surface and subsurface
profiles at a sequence of time steps arbitrary increments of time
apart. The first term of Eq. (26) is identical to the result presented
by Clemmens.

With the branch function [Eq. (2)], if t—1,<Tp, the first and
third terms of Eq. (26) are appropriate. For 1—t, > 1p

%( {r—ty - {e- ZA/‘}2> Tegh
Aty 2

in which ¢ is defined in Eq. (2).

The form of Egs. (26) and (27) allows for spatial variability in
the infiltration parameters, but, typically, the equations would be
used to estimate whole-border values. With two parameters, k£ and
a in a power law, a minimum of two time levels is required for
solution. For the four parameters in the modified Kostiakov for-
mulation of Eq. (26), it would follow that four simultaneous equa-
tions of the type of Eq. (25), at each of four time levels, would be
the minimum. Typically, many more are used, with a best fit
sought.

In seeking global values of Kostiakov k and a for a border
irrigation, Clemmens developed provisional values for all E;-:l(j
—1) possible k and a pairs derived from all the time steps leading
to a given time level i (for example, at the fifth time level, i=3,
and there are 10 possible k and a pairs). Each k and a combina-
tion applied to the average depth of infiltration Z;=V,(z;}/x,(z;)
led to a corresponding opportunity time 7,;. These were then nu-
merically averaged. A straight line through a plot of z; versus T
on logarithmic paper provided a global representative k and a for
the border. This technique allows viewing the infiltration function
as it develops, not unlike data from rings.

Typical results are shown in Fig. 4 [from Clemmens (1982)]
along with the best-fit Kostiakov function for the entire irrigation.
These are contrasted with the results of the Fangmeier (Roth et al.
1974; Fangmeier and Ramsey 1978) and Gilley (1968) methods,
as will be detailed later.

In a computational simplification, Clemmens guesses a, say
0.5, allowing a direct, rather than simultaneous, solution for k at
each 1 up to f, with the same averaging of opportunity times
leading to a point on the plot. The slope of the line, on logarith-
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Fig. 4. Infiltration functions computed by Linear Station Advance,
Fangmeier’s method, and the Gilley technique [after Clemmens
(1982)]

mic paper, provides a better guess for g, and the process is re-
peated until a converges (Clemmens reports two trials typically
necessary).

With the infiltration parameters found, Eq. (26) or Eg. (27)
provides the changes in subsurface storage in each segment in
each time step, while the depth hydrographs at the stations yield
the changes in surface storage. A volume balance between sta-
tions and time steps yields the discharges at each station, while
the profiles derived from the water-surface elevations yield the
water-surface slope. Thus Manning n can be determined at each
station at each time level. Averaging, as in Clemmens (1982),
yields a representative value for the border strip.

If the advance points leading to Eq. (26) had been found at
constant increments of time (either measured or interpolated) as
in Fig. 5, Eq. (26), with the Kostiakov power law, z=k79, leads to
a numerical evaluation of r,, the summation below

N
Vi 5 Ay {i~j+1}“”—{i—j}”“>
=2 4( i“la+1) @8

in which ry=ratio of average depth of infiltration to the upstream
depth. The relationships, 4;=jAz, t;=iAt, t,;—1,; 1 =A1, etc., were
used in the development of Eq. (28).
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Fig. 5. Surface and infiitrated profiles at a sequence of times steps a
constant interval Ar apart
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Measured Surface-Depth Hydrographs Replaced by
Theoretical Values

Monserrat (1994) devised a volume balance for the advance phase
that used theoretical rather than measured values of average
surface-water depths. He minimized an objective function, based
on a balance between inflow, surface, and infiltrated volumes in
level or sloping borders calculated with measured data, assumed
Manning n, and unknown % and «a. The optimization procedure
allows solution for both k£ and g, as opposed to the inversion
technique of Clemmens (1991), as well as A,; on the other hand,
Monserrat’s static database of solutions limits the analyses to the
conditions, broad as they are, of the prerun simulations.

Monserrat (1994) calculated, theoretically, distance-averaged
surface-water depths 7 in border strips, by interpolating within a
specially prepared database, precalculated once and for all by
numerical solution of the zero-inertia hydrodynamic equations.
The Kostiakov power infiltration formula was used, restricting the
inverse problem to this form as well. Interpolation within the
database proved far more accurate than assumptions of a shape
factor and normal depth upstream (Monserrat and Barragan
1998). The solutions and database are in dimensionless form to
take advantage of the great data compression this allows. In es-
sence, the database consists of tables of

v =F(K",a,5}) (29)

in which the starred variables are dimensionless ratios of the per-
tinent dimensioned variable and a reference value

y , k . ot

; k= ;o= =
Yx YR/ TS Xg Ty

V=

The definition of the reference variables depends on the bottom
slope of the border strip. For borders set on a nonzero slope, S,
and with inflow rate g, per unit width

Y =<M>O‘6. X :é. T =EE (31)
s, T TS TR g

while for irrigation of horizontal border strips, with cutoff time
f.o, the easily solved implicit corresponding expressions are

0.6

Ye= ( e ) L VeXe=a0Te Tr=tw  (32)
VYp/Xg

The database files consist of some 5,000 values of dimensionless

average depth y*(k*,a,x”). The 1998 paper presents the general

appearance of the function for selected a and k™ for the level and

sloping bottom cases.

In application to the estimation of field infiltration parameters
(Monserrat 1994), an objective function for minimization was de-
rived from the simple dimensionless volume balance, applicable
during precutoff advance

2 2
(e - ;;)%ﬁ) (33)

N
S= 2 <t; - F(k*,a,xzi)xzi - f

i=1 0

in which £,=1,(x). The time and advance data are measured val-
ues, put in nondimensional form with Eq. (30), the average
surface-water depth is found from the database by interpolation,
and the infiltrated volume is found by numerical integration. One
additional term to be squared and added to the others in the ob-
jective function in Eq. (33) is given by the postirrigation volume
balance, when all surface water has run off (totaling the volume
Vgo,)> namely

L*

o [ Kl e o, a4
0

in which #z,=measured recession time for point x. In a strategy
reminiscent of the work by Ley in 1978 (T.W. Ley, “Sensitivity of
furrow irrigation performance to field and operation variables,”
unpublished MS thesis, Department of Agricultural and Chemical
Engineering, Colorado State University, Fort Collins, Colorado,
1978) [see text surrounding Eq. (44)], the time period in the irri-
gation between the time of cutoff (or the end of advance—
whichever is smaller) and the time at which all surface water has
drained off is not represented in the objective function; there is
surface water on the field during this time, but the database does
not contain the average depths of flow for that period.

The reference variables of Egs. (31) and (32) are readily cal-
culated with an a priori estimate of Manning n, and known inflow
and bottom slope (or cutoff time). The corresponding y* values
are interpolated among the tabulated values with three-
dimensional polynomial interpolation.

Monserrat minimized the objective function using a version of
the Gauss-Newton algorithm specially adapted to functions,
which can be expressed as sums of squares (Bartholomew-Biggs
1977). A line search at each step [see Fletcher (1980) and Gill et
al. (1981), and also Press et al. (1992)], requires derivatives with
respect to k and a. Monserrat notes that calculation times are low,
that the greatest accuracy is achieved when the data on recession
time is included, and that no problems regarding uniqueness have
been experienced.

Power-Law Advance

Significant simplification in evaluating the Lewis and Milne inte-
gral in Eq. (21) follows the assumption of a functional form for
advance as well as for infiltration. In particular, if infiltration and
advance are both assumed to follow monomial power laws

Ay =K1 =K(t-1)°

X4 =fth
dﬁ — h—1
” = hft (35)

Now as pointed out by Hart et al. (1968), assumption of func-
tional forms for both infiltration and advance, if coupled to the
common assumption during advance that the average surface-
water depth is constant, overconditions the problem mathemati-
cally and leads to a violation of mass conservation physically. On
the other hand it is evident, from logarithmic plots of advance
calculated with mass conservation intact [solution of the Lewis
and Milne equation for advance, see Hart et al. (1968)], that over
a relatively short time interval, perhaps less than a log cycle,
departures of the advance function from a power law (straight line
on logarithmic paper) are minimal. Conversely, overconditioning
the problem as stated, over, say, a twofold distance (for example,
from 1/2 of field length to field length), violates continuity by just
a little, often justifying this approximate approach. Physically,
this means that the average surface-water depth is in fact not
constant, but varies a little, just enough to satisfy the mass bal-
ance.

Substitution of Eq. (35) into the integral in Eq. (21) yields a
relatively simple result. Indeed, following another change of vari-
able, a=1,/t, the result, during advance, is
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Vy=x4Az0r7= X4 - Kt° /1J (1 - )% da (36)
0

The structure of the integral shows that r; is a function of a and
h alone. Tts expression, known as the beta function, is formally
derived in Appendix I, which also encompasses both the extended
Kostiakov formulation of Eq. (1) and the time periods before and
after the completion of advance. Suffice to say at this point that r,
of Eq. (36) has a very a simple approximation, differing from the
theoretical result by less than 1% in the range of @ and / normally
encountered, viz. (Christiansen et al. 1966)

B l+a+h(l-a)

T 1+a+h(l+a) (37)

Iz

Thus, the ratio of average depth of infiltration to upstream
infiltration depth remains constant during advance. For furrows,
the infiltrated volume per unit length A, is usually assumed re-
lated to infiltrated volume per unit area z by a multiplier, a con-
stant nominal wetted perimeter W.

DeTar (1989), also assuming power-law infiltration and ad-
vance, developed a simple approximation to the beta function,
with the resulting r, differing by no more than 2% from the
Christiansen approximation. His approach is based on the as-
sumption that, given Eq. (1) with b and ¢ zero, it follows that Z
=k7% in which the barred quantities represent distance averages
over the length of the advancing stream at any time. In view of
the ease of calculating the theoretically correct 7, there seems no
advantage to this approach.

On the other hand, as could be expected, the summation in Eq.
(28) during a power-law advance would approximate the result,
[Eq. (66), Appendix I], expressed as the beta function or its Chris-
tiansen counterpart, Eq. (37). Moreover, the shape factor r, would
be constant as long as the stream continued to advance. And the
results for k and a would then be comparable to those of the
Gilley technique, described in a subsequent section. After ad-
vance was over, the summation in Eq. (28) would approximate
the shape factor characterized by the incomplete beta function
(Abramowitz and Stegun 1964, Sections 6.6, 26.5).

Infiltration-Parameter Estimation with Power-Law
Advance

These techniques differ primarily in their treatment of surface
volume—ranging from total neglect to careful measurements and
analysis of depth hydrographs during the course of the irrigation.
An early example of advance measurements leading to infiltration
parameters is found in Christiansen et al. (1966). They fitted a
straight line with slope / and intercept f to the measured advance
curve on logarithmic paper. A similar plot of ®,(z)

V)~ A - =g (38)

Bt
&1 = -
A1) = V(1) h+ el

1

~

in which the unknown Z and B were selected to make the fitted
curve as straight as possible, with slope p, yields a [Eq. (67),
Appendix I, and an intercept g from which K is readily found

g
K=
frZ(aa h)

As noted earlier, V() is obtained from the field data by sub-
tracting surface volume from inflow volume. As departures of
measured V() from a power law can sometimes be attributed to
an incorrect value of Ay; Christiansen et al. (1966) in the absence

(39)

of any data on surface-flow conditions, suggested selecting such a
value as will yield as closely as possible a power-law relation for
total infiltrated volume. They also note that a concave-upward
logarithmic plot of V,(r) suggests a significant additional term,
BT, in the infiltration formula. A value of final infiltration rate can
be selected a priori and its contribution to the infiltrated volume
subtracted to cause the remainder of the total-volume curve to be
as straight as possible (see original paper). Christiansen et al.
(1966) did not consider the constant term, C.

Smerdon et al. (1988) explored the consequences of neglecting
surface storage. They also investigated the Soil Conservation Ser-
vice (SCS) empirical advance formula, t,=h x,e"*4, in which b,
and b, are constants. In one variant, a single measurement of
depth at the upstream end and an assumed value of surface-stream
shape factor ry yield an estimate of average stream cross-sectional
area. Alternately, normal depth is assumed at the upstream end
and calculated with an assumed value of Manning #.

At the other extreme, Gilley (1968) coupled detailed measure-
ments of A,(r) with the assumption of power-law variation for
both (measured) advance and (unknown) infiltration [similar to
the Christiansen et al. (1966) approach]. Thus, the infiltrated vol-
ume follows a power law as well. With Kostiakov infiltration,
fitting the growth of infiltrated volume with a power law is tan-
tamount to assuming the average surface-water depth varies just
as necessary to satisfy continuity. The solution of Egs. (67) and
(39) leads to both k and a. In practice, the Gilley method often
leads to values of a that are too small, with consequent underes-
timation of infiltration at the larger times (see Fig. 4 for example).

Fangmeier (Roth et al. 1974) extended Gilley’s technique to
subsequent phases of an irrigation, measuring surface-water
depths throughout the course of irrigations in test borders (a
gradual 20% increase in upstream depth over the first hour was
not uncommon). The resulting parameter-estimation technique
was designed to utilize the volume balance after advance as well,
up to inflow cutoff, in order to arrive at a single pair of Kostiakov
k and a for the entire irrigation. The irrigation is subdivided into
a number of time periods, i. At the end of each period, best
estimates of k and a are updated, with the final values, after in-
flow ends, considered representative of soil conditions. During
advance, the Gilley (1968) technique yields a shape factor r,
[Egs. (66) and (37)], which together with measured average depth
of infiltration provides z(z;) at the head of the border. At each i, a
best-fit power function yields updated values of k and a. Not
surprisingly, these agree pretty well with the determinations re-
sulting from the Gilley method. After advance is completed, at
each successive time level an infiltration-depth profile is com-
puted from the measured opportunity times and last best estimates
of k and a. Numerical integration yields an updated r,, which
when applied to the measured average depth, provides successive
z(z;) at the head of the border for participation in the power-law
fit. Fig. 4 contrasts results of this method with Clemmens’ linear
station advance and Gilley’s method.

For furrow flow, Fangmeier and Ramsey (1978) evaluated soil
intake (volume per unit length) as the product of infiltration depth
(volume per unit area) and a characteristic width—wetted perim-
eter or top width. The writers’ method for determining & and «,
representative for both the advance and continuing phases, was
based on an observed correlation, an approximate proportionality,
between a and the slope of the logarithmic plot of total infiltrated
volume (calculated from the measured opportunity times and cur-
rent estimates of k and «) as a function of time. An examination of
Fig. 9 (Appendix T), based on power-law advance, shows that
during the advance phase, the infiltration and advance exponents,
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a and p, are in the constant ratio a/(a+h), since ris constant, but
that well into the continuing phase, p approaches a, as r,— 1.0
[see Egs. (35)—(37), (60), and (61)]. Fangmeier and Ramsey ap-
plied the observed ratio to the p value exhibited by measured
infiltrated volume (inflow minus outflow minus change in surface
storage) to estimate a, while k was chosen to make computed and
measured total infiltrated volumes agree when recession starts.

Assumed Average Surface-Water Volume per Unit
Length (Cross Section Area)

Because of the intense data collection required for measuring the
volume on the surface as the irrigation progresses, suggestions
have been made for estimating it instead. A common assumption
is that the bottom slope is steep enough that the upstream depth
rises quickly to normal depth and remains at normal throughout
the analysis. Thus the upstream cross-sectional area Ay, is esti-
mated. A typical concomitant assumption specifies a known con-
stant shape factor ry, usually guessed in the vicinity of 0.75,
relating average surface-flow cross-sectional area to upstream
cross-sectional area

A_Y =Ty Ayg (40)

This simplifying assumption artificially decouples the surface-
flow characteristics from the infiltration upon which they, strictly
speaking, depend.

With Eq. (40) and an assumed r, providing the surface storage
during advance, and with the simple infiltration formula Z=C
+BT suitable for cracking soils, Mailhol and Gonzalez (1993)
related stream advance to the infiltration parameters through a
Laplace transformation of the Lewis and Milne equation (particu-
larly simple for the given infiltration formula).

Monserrat and Barragan (1998) calculated dimensionless up-
stream depths and surface shape factors for a wide range of con-
ditions in border and basin irrigation, providing a theoretical
estimate of the errors introduced. Depth measurements in the field
(Bsfandiari and Maheshwari 1997b) showed instances of shape
factors well in excess of 1.0. Some theoretical confirmation of
surface profiles during advance exhibiting larger depths in the
middle of the stream than at the upstream end (stemming from
reductions in Manning n with time, as the sojl surface is
smoothed by the flowing water) is provided in Clemmens et al.
(2001). Alternately, A, is calculated by solving the hydrodynamic
equations of motion of the surface stream in a process that simul-
taneously determines one infiltration parameter to which the hy-
drodynamic equations are coupled [Clemmens (1991), discussed
in greater detail later].

Actually there are two aspects to the inverse analysis of the
advance phase (parameter estimation as opposed to calculation of
advance) inherently coupled to each other, viz., determination of
A, and extraction of the infiltration parameters such as k and a in
the course of the analysis. The behavior of the surface stream
affects the infiltration, while the infiltration plays a strong role in
determining the characteristics of the surface stream. Some of the
various methods proposed, including those that artificially de-
couple these two aspects (such as the aforementioned assumed
normal depth and shape factor), are described in the remainder of
this section.

Two-Point Method (Elliott and Walker 1982)

In a popular variation of the Christiansen et al. (1966) approach,
advance time is measured only twice, typically half-way to the
end of the field and at field end. The method assumes power-law

advance and, rather than base A—Y on the degree to which V; fol-
lows a power law, makes an independent estimate for Ay, based
on assumed normal depth for the given cross section, bottom
slope, Manning #, and inflow rate [Eq. (4)] and an assumed con-
stant shape factor ry. Then Vy in Eq. (5) is known at both x,. The
two-point method shares with similar methods any inaccuracies
stemming from the estimation of the average cross-sectional area
of the surface stream (Strelkoff et al. 2003). It also shares the
small violation of mass conservation stemming from assumption
of power laws for both infiltration and advance along with a con-
stant average cross-sectional flow area during advance. Concern
that one or both of the two advance measurements may be faulty
can be alleviated by plotting a line of best fit to the advance curve
on logarithmic paper and determining the two points from that.
The two-point method is easily extended to accommodate non-
zero b values in Eq. (1), once these are determined independently
(see Appendix I). Note, however, the caveat following Eq. (3).
The outcome of the method are the Kostiakov k and a, as follows:

log 2 L
h= ; - (41)
)
logl —
Lip
o)
By %
pma+h=—7E"0 o= (42)
)
log| —
I

with Eq. (39) yielding K.

Fig. 6 illustrates the effect of an incorrect estimate of average
surface-stream cross section for two different bottom slopes: (1)
Sp=0.0005; (2) Sy=0.005. The two-point method was applied to a
simulated border irrigation. The infiltration-function input to the
simulation (a time-rated family member requiring 4 h to infiltrate
100 mm) is labeled SRFR; the simulation then yielded both an
advance curve (f, shown) and ry, slowly varying with time. A
representative value was selected for use in the two-point method,
and the resulting infiltration function is labeled “ry correct.” Then
the representative value was changed by =10% with the results
shown. As can be expected, with the surface volume at the small
slope comprising a greater fraction of the total inflow, an error in
ry leads to greater errors in estimated infiltration than with the
large slope. In both cases the deviations from the correct infiltra-
tion increase significantly for times extrapolated beyond f,.

In the event of a level field, normal depth has no meaning, but
an extension of the method to this case has been proposed (Zeri-
hun et al. 2004). Instead of assuming A, constant in Eq. (40), it
is allowed to grow with x, in accord with Eq. (4) and the approxi-
mation that Sy=yy/x,. Then Ay, is implicit in the relationship

ATGRYyo = x, 051 (43)

derived from Eq. (4) and the furrow cross-sectional shape; the
right-hand side is known at both advance distances [selected in
Zerihun et al. (2004) as L/3 and 2L/3]. Then Ay follows from Eq.
(40). To extend the method to nonzero B requires depth measure-
ments as the ponded water surface falls after cutoff. B would be
given by the measured rate of fall and the assumption that at this
point in time, infiltration rate does not vary with location in the
basin.

Alvarez (2003) used the assumptions of the two-point method
to predict the advance and Kostiakov K for furrow discharges
other than the particular one at which the field test was run, to
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Fig. 6. Effect on predicted infiltration function due to variation in
estimate of average surface-stream cross section. (a) low bottom
slope: Su=0.000 5; (b) high bottom slope: Sy=0.005. t,=time to ad-
vance to field end. Two-point method (Strelkoff et al. 2003).

account for the different wetted perimeter. The technique is based
on the further assumption, supported by field observations, that
with different inflow rates, the advance exponent varies very
little.

One-Point Methods

One-point methods require measurement of time to advance to a
single point, typically at field end. It is assumed also in this
method, as usually applied, that the flow channel is sufficiently
steep to achieve normal depth at the upstream end quickly, and
that ry remains essentially constant during advance. This allows
solution of the Lewis and Milne (1938) integral equation. And,
while two measured advance points are generally required to
yield independent values of the two Kostiakov parameters, addi-
tional assumptions can yield the pertinent parameters with just
one advance point. In the original one-point method (Shepard et
al. 1993), the reasonable assumption of a Philip infiltration func-
tion, z=S712+ A7 (Philip 1969), and a quite restrictive advance
function, x=1t"2, lead to both constants, S and A, from a measure-
ment of the time to reach furrow end. The concurrent assump-
tions, instead, of NRCS (SCS) infiltration families and power-law
advance, x=ft", with f and A site-specific constants, lead approxi-
mately to the pertinent family, once the time for the stream to
reach a specified point is given (Valiantzas et al. 2001). This is
made possible by the fact that each family is defined by a particu-
lar value of k and a particular value of ; thus & is a function of a.
In an alternate method, introduced because some noncracking
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Fig. 7. Effect on predicted infiltration function due to variation in
estimate of average surface-stream cross section. (a) low bottom
slope: S3=0.000 5; (b) high bottom slope: S;=0.005. t,=time to ad-
vance to field end. One-point method (Strelkoff et al. 2003).

soils are fit better by the time-rated families of Merriam and
Clemmens (1985), a similar development (see Appendix II) also
leads to Kostiakov k and a from a single advance point. As noted
in Appendix II, the empirical relationships between k and a de-
pend on the actual wetted area, and consequently, in furrows k
should be based on wetted perimeter rather than on furrow spac-
ing.

A comparison between behaviors of the one-point (with time-
rated families) and two-point methods under a limited range of
conditions is found in Strelkoff et al. (2003) and is illustrated by
comparing Figs. 6 and 7. Fig. 7 shows the effect of varying ry in
the one-point method for the same soil and slopes as in Fig. 6. In
both, errors decrease with increasing slope as surface volumes
decrease in relative size. One-point errors increase gradually and
predictably as time is extrapolated beyond #,. As ry is changed, k
and a change in the same direction. Trends of the two-point errors
are difficult to predict. Changes in ry lead to k and a changes in
opposite directions. Error magnitudes are comparable. If extrapo-
lation beyond 1, is reduced (with advance occupying a greater
fraction of the total run time) the errors in the two-point method
are reduced.

In general, to the extent that the Merriam and Clemmens
(1985) observation is correct, viz., that infiltration in noncracking
soils can be characterized by the time it takes to infiltrate 100
mm, the one-point method described does an excellent job of
estimating the entire infiltration versus time function, given the
time for a stream to advance to field end. Error in the estimate of
average cross-sectional area of stream flow affects the results in a
moderate and predictable way. Worthy of note, however, the time-
rated families do not extend to Kostiakov k values below about
35 mm/h?

For soils that do not fit the time-rated families very well, for
example with a given a, and k smaller than the corresponding
value for the family (not shown), the errors in predicted infiltra-
tion increase substantially, with both correct and incorrect ry, Ex-
trapolation errors are very significant. Increased bottom slope
reduces the error. The one-point method fails altogether for a soil
as heavy as assumed and for excessive assumed surface-water
volumes. With k larger than that given by the families and little
extrapolation, the errors are relatively minor.

The two-point method fares better than the one-point method
when k is smaller than the family value, though eXtrapolation
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errors are still significant. It does not fail for small %, but errors
are substantial with excessive assumed surface volume. Increased
bottom slope reduces the error. With & larger than that given by
the families and little extrapolation, the errors are relatively
minor.

With a given inflow volume at the time, 7,, any error in as-
sumed surface volume is directly applied to the resultant assumed
infiltrated volume. For example, if at ¢, the surface and infiltrated
volumes are about equal (e.g., in Fig. 7 with S;=0.0005), a 10%
assumed decrement in surface volume leads to about a 10% in-
crease in estimated infiltrated volume, and hence in predicted z(z).
If, however, because of larger bottom slope or smaller Manning n
the surface volume is only one-half of the infiltrated volume (S,
=0.005), a 10% error in surface volume leads to only a 5% error
in z(z). These considerations evidently extrapolate to times well in
excess of #,. o

With the two-point method, the effect of relative errors in A,
on z(z) also depends on the relative sizes of surface and infiltrated
volumes at the times of measurement, but the regular behavior
appears limited to times less than 7,. With the degree of freedom
characteristic of the method, extrapolation beyond 7, can increase
the error in z{r) considerably, and also reverse the direction of the
effect of errors in A,.

These conclusions must be considered tentative in view of the
limited range of conditions investigated. Field length, for ex-
ample, was limited to 200 m. Furthermore, no basic infiltration
rate was considered for the soils, and infiltration was assumed to
follow the Kostiakov power law exclusively.

At best, results based on advance data alone apply principally
to the time period of advance. There can be significant changes in
infiltration rates at greater times, not well predicted by behavior
during advance. In particular, most soils exhibit a basic or final,
essentially constant infiltration rate at large times, often greater
than the advance time. To capture the influence of longer time
periods upon infiltration-parameter estimation, a number of tech-
niques have been proposed using not only a measured advance
curve, but a measured runoff hydrograph as well.

Scaloppi et al. (1995), focusing on sloping-furrow irrigation,
sought a relation in which the Kostiakov k and a could be deter-
mined by simple regression. Therefore, they found it necessary to
assume a functional form for the advance, again, a power law.
And, while recognizing the possibility of measuring surface-
stream volumes at a sequence of advance times (through knowl-
edge of the dry-furrow cross-sectional shape and measured wetted
top width at evenly spaced stations), they proposed approximating
assumptions leading to formulas for estimating surface-stream
volume during the advance and runoff phases in terms of an as-
sumed Manning »r, and an assumed shape for the surface-water
profile. This is based on the assumptions of (1) a power-law re-
lationship between top width and depth in the cross section, (2)
normal depth at the upstream end, and, during advance, (3) a
power-law relationship between depth and distance back from the
leading edge of the stream, with an assumed power, typically,
0.35. Once runoff has begun, normal depths based on periodically
measured rates are assumed at the downstream end of the furrow.
The stream profile is then assumed to consist of two branches: the
aforementioned power law in the upstream portion, and uniform
flow at the runoff normal depth in the downstream portion, the
distance at which the power-law depth matches the downstream
normal depth constituting the crossover point; the volume under
the profile is calculated accordingly.

The infiltration parameters sought are k, a, and b, in the as-
sumption that volume infiltrated per unit length is proportional to

a characteristic width W, the space-averaged wetted perimeter, or
as suggested, top width of the flow. Advance is assumed to follow
a power law in time so the subsurface shape factors are given by
Eq. (37) during advance, and by Eq. (68) (Appendix I) after. The
basic infiltration rate 4 is estimated from inflow/outflow measure-
ments, while regression analysis ultimately yields £ and a.

Ley (1987) avoided postadvance assumptions on the surface-
water profile by hopping over this period, connecting again with
field behavior after recession. In a search for a, k, and b, Ley
(1978) modified the approach of Christiansen et al. (1966) to
include matching predicted and observed total runoff volume as
well as the advance function. A Fibonacci search procedure for b
in Eq. (1) (Kahaner et al. 1989) was used to minimize the differ-
ences. At any value of b, with measured advance assumed to
follow a power law, x,=ft", and with ¥ estimated from ¢y, Sy, and
assumed 7 and shape factor 7y, the mass balance (e.g., for a bor-
der) can be written

t bt
e ke =1 -2 5 (44)
XA 1 + h

Slope and intercept of a logarithmic plot of the right-hand side
with time provides k and a for that choice of b. With the mea-
sured advance and recession curves, these infiltration parameters
yield a computed infiltrated volume. The search for & continues
until the difference between this computed volume and the differ-
ence between measured total inflow and outflow volumes is mini-
mal. Of interest, Ley recommended (without comment) using
only the last one-half of the advance curve to fit with the power
law. In furrows, recession was often assumed instantaneous, at the
time of cutoff.

More precise estimates of surface volumes can be achieved by
simulating the irrigation, i.e., solving the governing partial differ-
ential equations of mass and momentum conservation for the
given conditions. The hydrodynamic equations governing
surface-irrigation flow are not based on any assumptions on the
size or shape of the surface stream. Instead, the stream is subdi-
vided into segments and equations of mass and momentum con-
servation are written for each [see, e.g., Walker and Skogerboe
(1987)]. While Eq. (5) is presented for the entire length of the
irrigation stream, in principle it is applicable to any segment, with
O, referring to the inflow to the segment and Qpq to the outflow,
etc. Intake can be calculated on the basis of opportunity time and
wetted perimeter, given an empirical infiltration formula. A sec-
ond equation is based on the equilibrium of forces (velocities in
surface irrigation are so low that accelerations are wholly negli-
gible) comprising the downslope component of weight, the hy-
draulic drag of soil surface and plant parts, and unbalance in
hydrostatic pressures on the front and rear faces of a segment.
When these equations are complemented by a known inflow and
the fact that flow depths and discharges are zero at the advancing
front, there are just enough equations to numerically solve simul-
taneously for surface-water depths and discharges everywhere, as
well as advance, infiltration, runoff, and recession in a complete
simulation [WinSRFR, e.g., E. Bautista et al. (2009); SIRMOD,
Walker (2004)]. The results are as applicable to a level, or irregu-
lar basin as to a steeply sloping furrow.

Direct Inversion of the Hydrodynamic Flow Equations

Clemmens (1991) was able to invert the hydrodynamic unsteady-
flow equations governing the irrigation-stream flow to the extent
of one unknown field parameter. In the double-sweep algorithm
for solving the linearized equations of the Newton-Raphson
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scheme [see, for example, Walker and Skogerboe (1987)] if the
time step is given and the advance increment is the unknown,
then the sparse matrix of coefficients that is inverted at each it-
eration in each time step to yield the solution for the depths and
discharges in the body of the stream will have nonzero values
clustered only about the diagonal. But in the event the time step is
unknown and the advance increment is given, the matrix exhibits
an additional column of values. An extension of the traditional
double-sweep technique for the matrix inversion, accounting for
the additional column, was provided in Strelkoff (1990,1992).
When, then, a column of coefficients stemming from the gradients
of depth and discharge with respect to some field parameter
(Clemmens 1991) is placed in the matrix in place of the one
expressing the gradients with respect to an unknown time step,
and both time step and advance increment are specified (from
measurements), that field parameter comes out in the solution at
each time step.

The method requires a priori specification of all the remaining
field parameters, usually, Kostiakov a and Manning »n. At each
time step, the resultant k is used to calculate an opportunity time
for the computed average depth of infiltration. Then the resulting
plot is used to fit a new Kostiakov function—allowing recalcula-
tion with the more current value of a. The original paper provides
a wealth of detailed comparisons of results from various combi-
nations of assumptions in the method.

Parameter Optimization through Repeated
Simulation

When the unknown field parameters are so embedded in the per-
tinent equations that the latter cannot be inverted to yield them,
they can be sought in a program of successive approximation.
This typically involves repeated simulations, with changing val-
ues of the parameters, in a formal search procedure known as
optimization, aimed at minimizing the discrepancies between
simulated and measured values of selected quantities, such as
advance, water depths, runoff hydrographs, etc.

General concerns and approaches to secure an optimum can be
found in Press et al. (1992) Chapter 10, which explains the con-
cepts of much of what follows here—in detail and with much
background information. In particular, they first discuss the prob-
lems encountered and techniques available in a one-dimensional
search for a minimum. The global, or true, minimum of a general
objective function F(x) of one independent variable x can cer-
tainly be found, within a prespecified permissible range of the
independent variable, by brute force, i.e., calculating F over suf-
ficiently small increments, 3x, that a dip lower than all the others
will not be missed. The fundamental problem in practical one-
dimensional optimization is in devising a technique that will lead
to the global minimum via a reasonable number of calculations.
In multidimensional optimization, in which there are a number of
independent parameters, described, say by the vector p, the addi-
tional problem to be confronted is in the selection of directions in
which to change p from a current estimate, as well as in how
much to change it, so as to reach a global minimum, all within the
permissible range of p. In general, a good optimization algorithm
is robust, i.e., will inexorably converge to the global minimum,
bypassing local minima, regardless of the starting guesses for the
independent parameters or the nature of the objective function. It
will be economical of computation and will not require excessive
computer storage.

In the gradient methods, the search proceeds in a series of

one-dimensional steps, with the direction in each step selected in
response to the gradient of F (calculated, for example, by simu-
lation at two neighboring p).

In the step from iteration i to i+1

p(i+1) - p(i) —d= pi _ oz(i)R(i)g(i) (45)

the change in p is made in the direction of the vector d, given by
the matrix R premultiplying the gradient g, and of length given
by the scalar o. R=1, the identity matrix, corresponds to the
method of steepest descent, but this can be extremely inefficient
(Press et al. 1992), and other choices, twisting the direction of
correction away from the gradient, prove more suitable in the
search for the bottom of a long narrow valley with spurious local
minima representing the objective function (as visualized with
two free p components). A logical selection for R in the search
for the minimum of the F surface is the inverse H of the Hessian

matrix for F
FF 7!
H-= ( (46)
dp; dp;

for that is an indication of the local rate at which the gradient is
approaching zero, i.e., where F' is at a minimum. The expectation
is that, except for points at the boundaries of the permissible
domain of independent variables, the minimum of the objective
function corresponds to a zero gradient there. Direct calculation
of H is inconvenient, partly because of the difficulty in determin-
ing the second derivatives and partly because of the need for
inverting a potentially large matrix. A number of numerical alter-
natives have been proposed, as noted in subsequent sections.

Optimization to Match Advance

A series of methods, also, in a sense, constituting an inversion of
the advance problem, consists of repeated simulations with a
mathematical model controlled by one or another search proce-
dure. Walker and Busman (1990), with the aim of evaluating real-
time infiltration, i.e., while an irrigation was in progress,
minimized an objective function, Y, based on measured and cal-
culated advance

Y= 2 V(Ty;— fAj)2 (47)

=

in which the 7,;=measurements of advance time to specified lo-
cations x;; while the 7,; are simulated times with specific values
for the infiltration parameters, in a current estimation. The rough-
ness parameter is assumed to be known. The number of compari-
son points m, increases as the irrigation progresses, providing
ever more data on which to base the infiltration parameters. At
any step of the irrigation m, the objective function is minimized
(the infiltration parameters are optimized) in successive approxi-
mations via the downhill simplex method (Press et al. 1992), not
requiring calculation of the gradient of the objective function, but
only of the objective function itself, at n+1 estimates of the n
infiltration parameters at each step of the iterative process, i.e.

m

Yi=2 \"(TAJ‘ZAij)Z, i=1....n+1 (48)
=1

With two infiltration parameters k and a (1=2), there are three
vertices to the simplex, in general a polyhedron with 141 vertices
in n-dimensional parameter space, reducing, in the case of Kos-
tiakov parameters, to a triangle. With three, in a scarch for best
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values of k, a, and b, the simplex is a tetrahedron in three-
dimensional space. Each vertex is characterized by a set of values
for the desired n parameters. The simplex method consists in a
strategy (Press et al. 1992) for changing the locations of the ver-
tices in a manner designed to bring the optimum point into the
interior of a very small polyhedron.

Azevedo (1992) found the multidimensional modified Powell
method for determining successive directions for solution-vector
change coupled to the one-dimensional line minimization of
Brent at each direction change, together with minimum bracket-
ing [all in Press et al. (1988)] much faster and more reliable than
the downhill simplex method. He also found that smaller mini-
mums of the objective function prevailed when all three
Kostiakov-Lewis parameters—&k, a, and b—were sought in the
search; field determinations of b, for example, were often in con-
siderable error. Of note, the solutions proved not unique, with
different ultimate parameter values resulting from different start-
ing values. At the same time, advance calculated with the differ-
ent sets did not differ much.

Bautista and Wallender (1993) used the Marquardt method
(Press et al. 1992), a standard technique for nonlinear least-
squares curve fitting, to minimize the objective function

o (T ta(®); )’
F<p>=2(’” A"f‘)

J=1

(49)

gj

in which 7y ;=measured advance (o a given station x;; while #4; is
simulated, with field-parameter vector p having components, k, a,
and b; and o =weighting factor, generally set to unity, to account
for uncertainty in a measurement. Roughness was assumed
known, and ultimately, b also (field-measured steady-state infil-
tration rate), as the Marquardt algorithm exhibited difficulty in
converging to optimum values of three parameters. An alternate
objective function, couched in terms of advance velocity, proved
more useful in identifying spatially varying infiltration, but ulti-
mately, those results were inconclusive.

All of these methods provide more reliable infiltration data if
advance data from the entire irrigation is used, rather than any
portion of the advance curve, e.g., in an attempt to discern the
infiltration parameters as the irrigation progresses.

Optimization to Match Outflow Hydrographs

Gillies and Smith (2005) used a robust volume-balance scheme to
determine infiltration parameters in a modified Kostiakov formu-
lation. Advance was assumed to follow a power law as well. Both
advance and runoff data were matched in calculating least squares
of the differences. The procedure was subsequently amended to
account for inflows different from those measured in the test fur-
row (Langat et al. 2007) [leading to differences in wetted perim-
eter, as in the modifications to the two-point method proposed by
Alvarez (2003)] and for temporal variation in the measured inflow
hydrograph (Gillies et al. 2007).

Walker (2005) developed a systematic procedure for selecting
appropriate values of K, a, B, and Manning » in a simulation that
would match measured outflow hydrographs, when measured in-
flow, furrow cross sections, and bottom slope were given. The
search procedure differs from classical optimization of several
parameters simultaneously in that the parameters are sought se-
quentially, albeit iteratively. The concept of sequential determina-
tion of the parameters is based on the general observation of a
wide range of simulations that the four sought-after parameters
affect the results in different ways, specifically, that the K value is

the most influential in determining advance time (the time outflow
begins), that a is the most important factor affecting the shape of
the outflow hydrograph, while B is the most important in deter-
mining the absolute values of runoff rate. The roughness n was
seen as most influential in determining the time recession ends
(the time outflow ends). The necessity of iteration stems from the
imprecision of these observations.

In the multiple simulations comprising the method, the mea-
sured furrow geometry and inflow hydrograph are augmented by
successive approximations to the four parameters. Starting
guesses follow from Eq. (3) for B, the two point method [Egs.
(39), (41), and (42)] for K and a, and values in the literature for n.
In the sequence of nested optimizations, K is adjusted in the in-
nermost nest of simulations to make computed and measured ad-
vance times equal. The secant method provides the successive
approximations as changes in #; are nearly proportional to
changes in K. In the next outer nest, a Fibonacci search (Kahaner
et al. 1989) for B minimizes rmsgq the RMS of the differences
between computed and measured runoff rates

g
1
IMSgo = X[E (Qroir — Oroisliapn)’ (50)
=1

where N=number of points in the hydrograph; the subscript M
refers to measured values; S refers to simulated values; and the

hat above a variable, e.g., IA(, refers to the current value that sat-
isfies the search. At each value of B found in the process, the
inner nest of searches adjusts K to match the advance time. The
next ring of the search is for a, which also minimizes the RMS of

the computed and measured values of runoff. At each a value, B

and K are recomputed. The final, outer ring determines 7 to match
computed and measured recession times. A key advantage of the
method is that all data collection during the irrigation is confined
to the inlet and outlet of the furrow, with no need to enter upon
the wet field.

The issue of how much information about the field parameters
can be deduced from the measurements of advance alone (observ-
ability of advance) was examined theoretically, in the context of a
linearized zero-inertia model by Katopodes (1990). He concluded
that resistance and infiltration have indistinguishable effects on
the rate of advance, but that if one is given, the other can be
found. Of the three parameters, Kostiakov k£ and a and Manning
n, if two are known, the third can uniquivocally be deduced from
the observed advance. Two parameters can be deduced if mea-
sured surface depths are available for comparison. The optimiza-
tion can be difficult; in the case of an objective function based on
varying n and a, several local minima are observed, in a very
narrow valley, each of which is higher than the global minimum.
All three parameters can be estimated from measurements of a
single depth profile (Yost and Katopodes 1998).

Matching Measured Depths

An estimation technique based on a few selected depth measure-
ments at various locations or times during advance (not enough to
define stream volume, but only to compare with computed
depths) was presented by Katopodes et al. (1990). The objective
function to be minimized at the optimum values of the field pa-
rameters, presented as a vector p with components #n, k, and a
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n
p=|k (51)
a
is
J
F(p)= 2 [¥;-y(x,1.p P (52)

j=t

in which Y;=depth measurement at some x; #; and Yy
=corresponding computed point in a simulation with field param-
eters p. In principle, the components of p can each have compo-
nents reflecting spatial variability, this increasing the total number
of unknowns; in general, the greater the number of unknowns, the
more problematic the search. To avoid unacceptable (unrealistic)
p values, the objective function is augmented with constraints,
which cause the objective function to grow very large when these
are close to being violated, and so drive the search away from
those values.

In the gradient method selected by Katopodes et al. (1990),
two modifications obviating the need for any direct calculation of
the Hessian were proposed, both requiring calculation of first de-
rivatives of the objective function—a conjugate gradient method
and a variable metric method (Press et al. 1992). Both methods
utilize line search, a one-dimensional search for a function mini-
mum in a multidimensional parameter space, the search made one
dimensional by specifying the direction of the vector d of param-
eter changes. In essence, the methods utilize information, col-
lected in successive steps of descent, to approach an
approximation to the Hessian, and so indicate the direction of the
line search in the next step. They also have features intended for
identifying and disregarding local minima in the quest for the
global minimum.

Katopodes et al. (1990), by using a single depth profile with
about 10 points in Eq. (52), were able to search out rapidly and
without difficulty the appropriate values of n and k, if a were
fixed, or a and k if n were fixed. Searches for all three parameters
would converge only if starting values were fairly close to cor-
rect. This problem was corrected in Yost and Katopodes (1998)
through introduction of another search procedure, a so-called
fixed point method, which converges slowly, but inexorably. They
recommend starting the search with the new procedure and
switching to a gradient method as the parameters hove into range.

Several similar gradient procedures were applied by Playén
and Garcfa-Navarro (1997) in a search for the n-k parameter pair
and also the a-k pair, with the third component of the parameter
vector held fixed. They used code made available in Press et al.
(1988). Of the various techniques, the best choice proved much
the same as that used in Katopodes et al. (1990) and identified by
Press et al. (1992) as the Polak-Ribiere method, but with centered
finite-difference approximation to the gradient, rather than a for-
ward difference. Exhibiting somewhat better convergence charac-
teristics in the more problematic search for the a-k pair was the
Powell method [see Press et al. (1988,1992)]. Playén and Garcia-
Navarro (1997) applied these parameter-identification techniques
to a total of about 60 depth measurements over some six time
periods in the objective function. Both one-dimensional level
basin flow and purely radial flow, independent of the polar angle,
from a corner inlet were investigated; the results were essentially
equally good.

Both Playédn and Garcia-Navarro (1997) and Katopodes et al.
(1990) in their research used sifnulated stream lengths and depths
as the source for “field” measurements, and both extend the ca-

veat that use of truly measured values has not been tested. In
particular, one could expect difficulties stemming from spatial
variability, measurement error, and in general, data which is not
smooth.

Matching Measured Advance and a Depth Hydrograph

A quite different procedure for estimating whole-border infiltra-
tion and roughness for the advance phase was developed by Val-
iantzas (1994) using a combination of measurements and
theoretical (zero-inertia) simulations (e.g., Strelkoff and Katopo-
des 1977). The field parameters sought are the Kostiakov k and «
and the Manning n (actually its equivalent, normal depth y, for
the given inflow and bottom slope). Both the advance trajectory
x4(t;), i=1,...,N, and a depth hydrograph yg(z), j=1,....M,ina
reference point x, at or near the inlet end of the border, are mea-
sured. The procedure requires a series of iterative steps each of
which employs simple volume balances equipped with theoretical
shape factors and depth hydrographs derived from simulations
based on current values of k, a, and n. The volume balances, in
turn, yield k and a for the simulations, while linear regression
between depth values and zero-inertia predictions yield the re-
quired 7.

The volume-balance equations with the unknown (constant)
infiltration parameters, k and a, are written in the form

N
Fulk,a)= >, [mm - 2l (53)

]2
i=1 rlt)yr + rot)kt}

in which ry and r,=current values based on theoretical simulation
and the r;=times at which the advance comparisons are made.
Evidently, ry is a little different from its standard meaning, being
the ratio of average stream depth to the reference depth, yz, not
necessarily exactly at the upstream end of the border. Eq. (53)
requires nonlinear least-squares fitting [the writer suggesting a
linearization method (Draper and Smith 1981)], which may be
worthwhile as the final values of k and a are approached. Other-
wise, a logarithmic transformation allows linear least-squares fit-
ting

2
Fylk,a) = 2 (13[ o _ rY(ti))’R:{ —In[rz(t)] -~ an(z) - hl(k)>

i=1 XA(ti)
(54)
for a and In(k).

In the search for the field roughness, the friction-slope term,
Sy, in the force-equilibrium equation

dy
~—=8,-5 55
ox 07 9f (55)

can, with Manning roughness, be expressed in terms of the time-
varying reference depth vy and the constant normal depth yy, as

Y 10/3

Yr

At the same time, the depth gradient dy/dx can be approximated
during advance by the expression

a w

ox Xg—XR
in which the correction term w relates the depth gradient at x, to
the average gradient.
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Thus, the slope of the best-fit straight line through (0,0) and
the series of points with the —3/10 term in Eq. (58) as abscissa
and the left-hand side as ordinate, at times 7, (n=1,M) yields a
current value of yy

wy (g, 1) >‘3’ 0 (58)

Solxalt;) —xg]

Valiantzas finds it both possible and unnecessary to update the w
correction factor, recommending simply a constant value of 0.3.

He reports convergence of the iterative scheme in three to six
iterations. The method is reminiscent of Monserrat (1994) in its
use of theoretical simulations to yield pertinent, time-varying
shape factors ry and r, instead of assuming some constant values.
The methods differ in that Monserrat utilizes a static database of
prerun simulations, while Valiantzas’ database is dynamic, run
“on the fly” as required.

y(xg.1) = )’N<1 +

Summary and Conclusions

Nearly two dozen methods proposed in the literature for estimat-
ing infiltration and roughness from field measurements of test
irrigations have been reviewed. They differ in their data require-
ments, assumptions, ease of analysis, and accuracy. They have
been divided into two broad categories. One features direct appli-
cation of mass conservation expressed in terms of the infiltration
parameters and then inverted in some way to extract them. The
other is based on repeated simulation with a sequence of values of
the field parameters, coupled to some kind of search procedure,
an optimization, to minimize differences between simulation and
measurement. The methods have been compared, especially in
their theoretical foundations, common approaches, and differ-
ences. A new one-point technique has been proposed, along with
suggestions for extending existing methods.

All methods assume that the inflow and outflow hydrographs
are measured with reasonable accuracy. All methods for estimat-
ing roughness require that infiltration parameters are either known
beforehand or estimated with one or another technique. Not all
methods require Manning n, or its equivalent, to be either known
or determined. Finally, the comments on the methods apply, by
and large, to estimation from a single irrigation event.

Further testing is needed to determine the accuracy of these
various methods under field conditions. Accuracy requirements
depend upon the reason for the estimation and how the resulting
parameter values will be put to use. Iterative or optimized solu-
tions should be tested for reliability and uniqueness of conver-
gence.

This library of techniques is intended as a source for further
selection. From a practical standpoint, the user will be interested
in minimizing the requirements for field data, while obtaining
sufficient accuracy to satisfy evaluation, management, or design
needs. More theoretically minded readers may choose to advance
the capabilities of one or another method. The remaining four
papers in this series prepared by the EWRI Task Committee on
Soil and Crop Hydraulic Properties provide practical examples.

Appendix L infiltration-Profile Shape Factor with
Modified Kostiakov Intake and Power-Law Advance
Functions

For a Kostiakov intake function augmented by a constant term
and a final constant-rate term [Eq. (1)] and power-law advance,
Eq. (35) become

Ay=K(t-t)*+B(t—t)+C

s

x,=ft ” =hf), =1 (59)
d

x,=1L; —xé=, t>1
dt

in order to include times both before and after completion of
advance; L=1length of run, and #; =time to advance there. With the
transformations and substitutions employed in developing Eq.
(36), the infiltrated volume in Eq. (21) can be written for this
general case as

VZ= XA[KtarZI + Btrzz + Crz3] (60)
in which
no(tv
r =T (1 - a)*ada (61)
Nodo
ho[M
rp =T (1 -a)a"da (62)
Aydo
N
F;= Ty o lda (63)
Aydo

The factor N}, stems from the fact that in the postadvance period,
ft">L, so, in order that x, appear explicitly in the infiltrated
volume described by Eq. (60) (x,=L, postadvance), A, must be
introduced. In general

t
Ay = —té 1>1 (64)

The integral in Eq. (61) with A\, <1 is known as the incom-
plete B function. During advance, with Ay=1, it is simply the B
function. Multiplied by 4, this is the shape factor r, for Kostiakov
infiltration. An approximation to the 3 function was developed by
Kiefer (1959), who expanded (1 —a)® in the binomial series, ab-
solutely convergent for 0=« =1 and a>0 (Courant 1937, Vol. I,
p. 406), and integrated the integral term by term to obtain the
result for ry

ah N ala—-1)h
h+1 21(h+2)

ala-1)(a-2)h
31(h+3)

rp=1 (65)

The B function is exactly expressible in terms of gamma func-
tions (Abramowitz and Stegun 1964, formulas 6.2.1, 6.2.2), with
the result

B Ird+a)l(1+h)

T T (1 ra+ k) (66)

shown for orientation purposes as a family of curves in Fig. 8§,
with a as the parameter. Eq. (66) is replaceable for all practical
purposes by the closely fitting algebraic expression of Chris-
tiansen et al. (1966) [Eq. (37)]. Its 1% maximum error through
the practical range of a and 4 is considerably better than the sum
of four or five terms of Eq. (65).

During advance, it is clear that the growth of that part of the
infiltrated volume stemming from the Kostiakov k and a is itself
a power law, i.e.
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Fig. 8. Infiltration profile shape factor ry during power-law advance
with exponent & and Kostiakov infiltration with exponent a

Vy—x4[Btrp, + Cryl=x,Kf* =g’ with p=a+h (67)

In the postadvance period, with ft">>L, the corresponding series
expansion (Scaloppi et al. 1995, corrected) taken to N terms is

N i -1 .

ra=1
“ h+i yi—j

i=1

in which IT=product of i terms. The terms of the series with Ay
set to 1 are identical to those in Eq. (65). The more complex
relationship, r;(a,h,t/t;), stemming from the incomplete beta
function is plotted for comparison in Fig. 9, for one particular
value of a=0.5. The curves are distinguished by the value of the
parameter /1. Values of g smaller than 0.5 raise the values of ry,
clustering them closer to 1.0, while larger a¢ values cause the
curves to spread out (not shown).

The integrals in Eqgs. (62) and (63) are easily evaluated, so that

I3
rzz=<1—h+li> (69)

in the general case, or, during advance
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Fig. 9. Infiltration profile shape factor r, during and after power-law
advance with exponent /2 and Kostiakov infiltration with exponent a

Fz = < h_—-1|:—1-> (70)

Finally

rg = (71)

in all instances.

Appendix Il. Evaiuation of Merriam and Clemmens
(1985) Time-Rated Family from a Single Advance
Point

As noted in Strelkoff and Clemmens (2001), an assumption that
the field soil can be characterized by the Merriam and Clemmens
(1985) time-rated families (similar to assuming an SCS family, as
reported by NRCS/USDA (SCS) (1984), and as was done earlier
by Valiantzas et al. (2001)] allows a determination of Kostiakov k
and a from a single measurement of advance, say, to the end of
the field. In the time-rated families, k and a are related through an
empirical determination of a statistically significant relationship
between a and 74, the time (in hours) to infiltrate a depth of 100
mm

a=0.675-0.2125 log;o(t100) (72)

With k=100/1{y,, k(a) is given by

k= 102—&[(0.675—a)/0.2125] (73)

For orientation purposes, Egs. (72) and (73) are graphed in
Figs. 10(a~c). It is clear that k values below about 35 mm/hr?
cannot be accommodated in the analyses. Fig. 10(b) shows also
the relationship between k and implied in the NRCS families for
comparison. These empirical relationships were developed for the
one-dimensional (vertical) infiltration in borders. To be used in
furrows with any degree of success, k and K should be related
through a physical wetted perimeter rather than furrow spacing.
In the case of the NRCS families, that would be the empirical
wetted perimeter [Eq. (20), Strelkoff et al. 2009], whereas with
the time-rated families a reasonable choice would be the upstream
wetted perimeter or wetted perimeter at normal depth.

Of the two values of a evident in Fig. 10(b) for any k value,
only the larger is pertinent; the empirical function, Eq. (72), is
valid only between about a=0.3 and a=0.8 (Merriam and Clem-
mens 1985).

A mass balance written for the entire inflow volume at the time
l'2 1S

Gla.h) = Ooty — Wyk(@)ar(a.h)xs; Ay =0 (74)

in which G=imbalance in volume (reduced to zero when the cal-

culations have yielded the correct infiltration parameters); QB
=time-averaged inflow rate to the furrow or border strip, and
Ay=distance-average cross-sectional area of the surface stream.

If in Eq. (74), the exponent 4 in r; could be shown dependent
only on &, Eq. (74) could be solved for a and Eq. (73) for £, thus
completing the evaluation. Indeed, the first of Eq. (41) can be
rewritten as
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Fig. 10. (a) Empirical curves relating Kostiakov a to £, the time to
infiltrate 100 mm (Merriam and Clemmens 1985); (b) implied varia-
tion of k with a. Values for ¢<C0.3 are shown only for theoretical
interest. Variation of k with @ in NRCS intake families is shown for
cormparison.
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The quantity, r,, is arbitrary and user selected, typically, r,=1/2,
while r, can be shown a function of the unknown a alone. Indeed,
with x,=V,/(r,- Wy £9)

(75)

V —A_rlx
oo AL _ Vo1 Aylxan (76)

a a
Xpa2  Vapr, Var,

which can be solved for r, in terms of a and known quantities

rla) = Voi _ rQotr 77)

== — = —= —
"WVt Avn 1Oty - Apxan] + Aykas

Eq. (74) reduces now to a single nonlinear equation in a. The left
side of Eq. (74) is graphed in Fig. 11 for a sample set of physical
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Fig. 11. Example graph of solution function G
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Fig. 12, Example of a poorly posed problem: small differences in
measurements or assumptions would lead to large changes in the root,
a, or no root

conditions; the larger root is the correct one. Iterative solution for
a is straightforward, provided the average cross-sectional area of
the surface stream is not assumed so large that the function G in
Fig. 11 has no root. The secant method of solution (Press et al.
1992), starting with a first guess, a=0.8, and a second guess, a
=0.75, to establish the slope of the initial secant, converges to the
correct root (>0.3); however, as can be seen in Fig. 12, the physi-
cal parameters can be such as to lead to a poorly posed math-
ematical problem, with small changes in measured or assumed
physical variables leading to large changes in the solution for a.
As seen in Fig. 10, an overly large a coincides with an overly
large k as well, leading to Kostiakov parameters, which consis-
tently overestimate infiltration, a result of underestimated Man-
ning n or surface-stream shape factor, ry. It is also clear that
measurement errors and different estimates of Vy can result in no
possible solution for a.
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